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Semi-membrane theory of thin shells of Vlasov [l] reduces the number of the 
boundary conditions which have to be iirlfilled at the curvilinear edges of the 
shell, to two. The remaining two conditions hold by virtue of the arbitrariness 
of the simple edge effect. In analogy with the membrane theory, when the 
shell is computed using the Vlasov theory, the tangential conditions are usually 
made to hold at the curvilinear edges and the discrepancies appearing in the 
nontangential conditions are removed with help of the simple edge effect, 

In the present paper the boundary conditions at the curvilinear edges were 
obtained for the Vlasov system of equations using the asymptotic method. As 

a result, it was found that for certain types of clamping of the shell edges the 
boundary conditions sought must contain the non-tangential terms. The results 
obtained were confirmed by a numerical example, 

Gol’denviexer generalized the Vlasov theory to embrace arbitary shells of 
zero curvature. The stress-strain state under consideration is called in [ZJ, the 
generalized edge effect, The terminology and notation used below are those of 

c23. 

1. Let the quantities sought have the variability index 8 along the generatrices 

(which are assumed to coincide with the a -lines) and the variability index t along 

the directrices (which are the fJ -lines). Then we can replace a and B by the new 

variables E and r~ in the following manner: 

a = Rl,*er, fi = Rh,‘q ( 1. 1) 

where h, denotes the relative half-thickness of the shell and R its characteristic rad- 
ius. 

In what follows we shall assume that the differentiation with respect to E and tl 

does not appreciably increase or decrease the values of the functions sought. 
It was shown in [2], that the quantities t and 0 can assume the positive, as well 

as the negative values. When t = 0 , the generalized edge effect loses completely 
its ability to decay, and we say that it degenerates. The variability indices t and 0 

are connected by the following relation: 

t = ‘I4 + r/a 2 (0 d t < ‘1s) (1.2) 

The stress-strain state in question has the following asymptotic representation (which is 
given in a somewhat different form in [Z] ): 

LI= q+eu*, 2' =j2;1+2q)*, ,=h-l+Mw* 
* 

(1.3) 
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TI = hz+=‘Tle, T2 = h’-+” 
* 2*1 

S - hi/P-‘8 
-* * 

(G, C,) = W (G,+, &it), H= hl+‘-eH, 
* 

N, = hzr2tN1*, N2 z h”‘N, 
* 

Here and henceforth we assume that aiI quantities accompanied by an asterisk are of 
the same order. 

Substituting (I.. 3) and (1.1) into the equations of cyiindrical sheils and restricting 
ourselves to the terms of order 8 where 

e = 0 (h’-“) (1.4) 
* 

we obtain the Vlasov equations. 
Let us write, with the help of the asymptotics (1.31, only those equations which 

will be needed in computing the boundary conditions. They are 

TM - 
alA, 

hi-2tvTo, a 2E I 
@a 

(1.5) 

hs-4’ * T, - .%;-2’vT, E; 2++R+$) 

2 Let uiu asumb .@at the internal state of stress of the shell can be separated in- 
to the generali@ and the simple edge effect. Following [g, we shall write all tm- 
known quantuies as Suns of two terms 

P = PW + j$pW (2. u 

Here P denotes any of the quantities (dicplacementr. .forces, moments) datermining 
the strcrr-strain state of the shelL The superscripts (g) and (a) indicate whether the 
ctuantfty in c~~e$tion belongs to the generalized. or the si&ple edge effect,respectively. 
We assume that P&J can be constructed from the inhomogeneous equations of the 
generalized edge effect, and PC’) from the homogeneous equations of the simple 
edge effect, and P@) is accompanied. for this muon, by a scale muMpMer h*“ 
where a is a number common to ail quantities and chosen in accordance with the bou- 
ndary conditions. As was shown in [2], the quantities of the simple edge effect have 
the following asymptotic 

u = hpu*, v = h’-‘r (2.2) 
* *t w = h*‘w*, y1 = h;‘l’yl* 

T, = hi-“T,*, T2 = h*‘Tm, S = ha”+,, * GI = h,&&, 

N 1 = I:,l’N,*, N, = hr’NWu, H = hz-tH* 

Next we consider variau boundary conditions. 
H i n g e d e d g e. The boundary conditions at the edge a = a~ have the form 

T, = 0, u= 0, to= 0, G,= 0 

T&ng into account (2. I.), (2.2) and (1.31, we can write the&e conditions in the form 
h-1+28+,$?) + j$++:lf) = 0, &,,O+&) + ,r-2t,f; = 0 (23) 
* 

]L-.2+2’wf) _t_ h*aw$’ =i 
* 

0, h&i”,’ + haf2G(‘) = 0 1* 

Putting a=-22tt we obtain a non-contradictory boundary value problem and the 
fbt two formulas of (2.3) witi then yield, with the accuracy deff fled by (1.4). the foil- 

owing boundary conditions for the generalized edge effect 
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v(g) = 0, q@ = 0 (2.4) 

From (2.3) and (1.5) it follows that the displacement II*(~) and hence @P+(~~/@, 
T$! and E$) , are equal to zero at the edge to within some degree of accuracy, 

In this case we find from (1.5) and the last two formulas of (2.3), that the values of 
&) and Glee) are reduced at the edge in the following mannen h-‘%~) becom- 

es h-%@, and h,%-$ becomes hi-“Gii). As a result, the kndary condit- 
ions f& ge simple edge effect can be written as follows: 

&) = R,Tig+(2Eh), GI”’ = - $8’ (2.5) 

We note that the boundary conditions were derived with help of the complete equations 
of cylindrical shells. 

In the case of a clamped edge just discussed, the principal stresses of the simple 
edge effect are h-‘+” times smaller than the principal stresses of the generalized 
edge effect, This*agrees with the presently held opinion that the simple edge effect 
is small near the hinged edge. 

Let us consider another form of the boundary conditions describing a hinged support 
at the edge a = a0 

S “-0, u-0, w---O1 G,=O (2.6) 

We set a = - 1. Following the procedure of the previous case, we arrive at the bo- 
undary conditions for the generalized edge effect, and the boundary conditions for the 
simple edge effect .U) = 6, u&r) = 6 (2.7) 

$9 = -S(S), G?’ = 0 (2.8) 

The intensity of the simple edge effect in terms of the principal stresses is the same, 
as that of the generalized edge effect. 

We note that in the case (2.6) of clamping, the boundary conditions do not separate 
in the usual manner. The conditions (2.7) for the generalized edge effect now contain 
together with the tangential displacement r&g1 , a no-tang~tial displacement wcgs, 
and the conditions (2.8) for the simple edge effect contain also the tangential stress 
St”)* 

Free edge (a=a,) 
S = 0, Tr=O, G,= 0, Nl= 0 

Putting in (2.1) a = - 1, we obtain the tangential conditions for the generalized 
edge effect and non-tang~~al conditions for the simple edge effect 

qg’ = 0, S(g) :: 0 (29) 

Gf) = _ G(a) 1 , A+0 (2.10) 

Clamped edge (a=%,,) 
l.5 = 0, v= 0, ill = 0, ‘r’r = 0 

or, with the asymptotics taken into account, 
h;~+f$,f) _+_ /$+‘hu$~= ,,, h;1+28-fcf$ + f$+l-‘p(*s) = 0 

h-i+“e-tfw(*8) + bau;;) = 0, 
* 

h;“+‘$g + h;-‘-l’Spi = 0 

Let us put a = - V9 + t. This yields the conditions for the generalized and the 
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simple edge effect with the accuracy of up to the 

u(8) =O, V(g) Z-0 

terms of order 0 (hyYL) 
( 2. 11) 

&S) = 0, $’ = - rig’ 

The accuracy of the conditions (2, ll) is less than that of the equations of the gen- 
eralized edge effect and the boundary conditions (2.4). (2. ‘7) and (2.91, i. e. lese than 
(1.4). It can however be increased to 0 (hie2’) using the method given in [2] on p, 
303. Simple manipulations conMing of algebraic elimination of the quantities be- 
longing to the simple edge effect from the complete boundary conditions, yields the 
following conditions for the generalized edge effect with the accuracy defined by (1.4) 

u(g) - v3 (y-_ v2) $J’ = 0, ,(g) =: 0 

and these conditiona cannot, in general, be regarded ar tangential, 

Fig. 1 

We have investigated above four 
types of clamping of the shell edge. 
We have found that in two caae~, for 
a hinged (2.6) and a clamped edge, 
the bumdary conditions do not sep- 
arate in the ma1 manner. We have 
omitted numerous variants of the 
boundary conditions describing elaat- 
ic clamping of the edge and various 
types of hinged support. It can be 
expected, that the separation of the 
boundary coalitions into parts will 
yield, in some of these cases, new 
results, 

No t e. It can be shown that the separation of the boundary conditions obtained for 
the cylindrical shells remains valid for any shell of zero curvature. 

3. Let us perform a numerical computation of the state of stress of a circular cylin- 
drical shell hinged along the edges (2.6), with relative thickness of 2hlR = 0.01 and 
length 21 = 2zcR, acted upon by a normal load J% = q cos 58 cos 5. The coordinate 

s is directed along the axis of the cylinder - 1 I R 5 E < 11 R, p is the circular 

coordinate and v = 0.3. 
Let us determine the tlexure of this shell: (a) using the classical theory, (b) using 

the theory of generalized edge effect with boundary conditions (2.7). (c) using the 
latter theory with tangential boundary conditions u(g) = 0, Stsl = 0. The rcJults are 

presented in the form of graphs show&g the dependence of W t IwE / rcll.iO-‘ on E 
( see Fig. 1). The graphs ahow that the curve b describes the deflmtiom t+tisfoctori- 
ly. while the curve c gives a completely false picture of the deflections. 
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